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From the cube to the Dyck and Klein tessellations:
Implications for the structures of zeolite-like carbon
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Geometrical transformations can be described which have the effect of multiplying
the numbers of vertices in a trivalent polyhedron by three, four, or seven. Tripling the
cube by the so-called leapfrog transformation gives the truncated octahedron. Quadru-
pling the cube followed by identifying the square faces to give a genus 3 surface gives
the Dyck surface of 12 octagons. Septupling the cube by the so-called capra transfor-
mation followed by identifying the square faces to give a genus 3 surface gives the Klein
surface of 24 heptagons. These geometrical transformations relate to the construction
of low-density zeolite-like structures for carbon and boron nitride allotropes based on
a cubic lattice.
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1. Introduction

The experimentally known carbon allotropes are of four types, namely dia-
mond, graphite, fullerenes, and nanotubes. Diamond and graphite have been
known since antiquity whereas fullerenes were first isolated in the late 1980s and
nanotubes a few years later. The structure of diamond consists of an isotropic infi-
nite network of tetrahedrally hybridized carbon atoms in all directions whereas the
structures of the other carbon allotropes are based on trigonal carbon atoms. The
structure of graphite consists of a flat sheet of carbon hexagons whereas the fulle-
renes [1] are closed polyhedra generally having 12 pentagonal faces and various
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Figure 1. (a) The Klein tessellation {7,3}. (b) The Dyck tessellation {8,3}; In both, cases the edges
with identical letters (A→H or G) are identified to embed the tessellation in a genus 3 surface.

numbers of hexagonal faces. The first such fullerene to be isolated was the trun-
cated icosahedral C60. In the carbon nanotubes a network of carbon hexagons
similar to the planar sheets in graphite is folded over and joined to form a tube
using positively curved pentagonal faces to close the ends of the tube.

Carbon structures based on networks of trigonal carbon atoms having only
hexagonal and larger faces, e.g., heptagons and/or octagons, have been proposed
in the literature during the last 15 years. The presence of faces larger than hexa-
gons leads to sites of negative curvature and precludes the formation of closed
polyhedra when there are no compensating pentagonal, quadrilateral, or trian-
gular faces of positive curvature. The trivial name schwarzite has been sug-
gested for these still unknown carbon allotropes in honor of the mathematician
H.A. Schwarz, who first studied the relevant negative curvature surfaces in detail
[2].

The theoretical possibility of negative curvature allotropes of carbon was
apparently first recognized by Mackay and Terrones [3], who proposed the P192
schwarzite structure with a unit cell of 192 carbon atoms consisting of hexa-
gons and octagons in a simple infinite cubic lattice. Their proposed structure was
quickly followed by the 216 atom unit cell P216 and D216 schwarzite structures
of Lenosky, Gonze, Teter, and Elser [4], consisting of hexagons and heptagons in
a similar cubic lattice. A structure with only hexagons and heptagons in a cubic
lattice with a smaller unit cell was the D168 schwarzite structure of Vanderbilt
and Tersoff [5]. In 1996 King [6] first showed the connection between the D168
schwarzite structure of Vanderbilt and Tersoff and the classical Klein tessella-
tion [7] (figure 1(a)) consisting of 24 regular heptagons embedded in a genus 3
surfaces. The leapfrog transformation [8] used to triple the regular dodecahedron
into the truncated icosahedron of C60 (figure 2(a)) can also be used to triple the
Klein tessellation (figure 1(a)) into the D168 schwarzite structure. In both cases
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Figure 2. Leapfrogging a squared face of a trivalent map.

the leapfrog transformation introduces the minimum number of hexagons so that
no pair of non-hexagons shares an edge. In the case of fullerenes this leads to
the so-called “isolated pentagon rule.”

The Klein tessellation is named after the 19th century German mathemati-
cian Felix Klein. One of his students, Walther Dyck, discovered a genus 3 tes-
sellation of 12 regular octagons (figure 1(b)) [9]. A leapfrog transformation on
the Dyck tessellation leads to a structure consisting of a 96-vertex unit contain-
ing only hexagons and octagons. This is a potential unit cell not only for possi-
ble carbon allotropes but also boron nitride (BN)x allotropes. In this connection
the most thermodynamically stable boron nitride allotropes have only heteronu-
clear BN bonds, which is only possible if all of the faces have an even number
of edges, e.g., squares, hexagons, or octagons.

The Klein and Dyck tessellations (figure 1) are networks of polygons
embedded on a genus 3 surface, i.e., a sphere with three handles. The significance
of genus 3 is that such a surface can be isotropic in all three directions unlike
genus 1 and 2 surfaces, which must necessarily be anisotropic. The sphere with
three handles is topologically homeomorphic to a cube with three tubes connect-
ing pairs of faces in an isotropic manner. If the three tubes all connect adjacent
(cis) faces of the cube similar to the bidentate ligands in a tris(bidentate) octahe-
dral metal complex, then the resulting genus 3 surface can be a finite structure
similar to the tessellations discussed by Klein and Dyck in their 19th century
papers (figure 1). However, the relevant alternative is a chain of trans connec-
tions of opposite faces of the cubic unit cells leading through infinity to a cubic
lattice with a zeolite-like structure.

The unit cell in these zeolite-like structures proposed for these carbon and
boron nitride allotropes is a cube with congruent holes in each of its six faces
known as a plumber’s nightmare (see below). This paper describes transforma-
tions that lead directly from the original cube to the Dyck and Klein tessellations
(figure 1) embedded on the surface of the cube. Such transformations demon-
strate the relationship of these genus 3 tessellations to a cubic lattice.



428 R.B. King and M.V. Diudea / Structures of zeolite-like carbon and boron nitride allotropes

2. Tripling the cube to the truncated octahedron: The leapfrog transformation

The leapfrog Le (tripling) transformation [8,10,11] (figure 2) consists of P3

capping (i.e., polygonal 3-capping, stellating) each face followed by dualization
thereby generating a network of 3n vertices from any network of n vertices (each
having degree 3). In the above, the omnicapped P3 network forms a pair with its
dual, which interchange by dualization.

The leapfrog operation can be written as follows [11]:

Le(M) = Du(P3(M)) = Tr(Du(M)) (1)

A sequence of stellation-dualization rotates the parent s-gonal faces by π /s. The
Ps (s = 3, 4, 5) symbol denotes a capping, by polygons of size s, operation [11].

Applying this process to the cube C gives the truncated octahedron
(figure 3), which has 3 × 8 = 24 vertices, 36 edges, and 14 faces. This is a rea-
sonable polyhedron for a molecular allotrope of boron nitride, B12N12, since the
boron and nitrogen atoms can be located at alternate vertices so that all 36 edges
correspond to B–N bonds with no direct B–B or N–N bonds, which are less
energetically favorable [12–14].

It is possible to carry the leapfrog transformation of the cube even beyond
the truncated octahedron to give a genus 3 tessellation that could be the building
block of an infinite cubic lattice based on the plumber’s nightmare (figure 4(a)).
In this connection the surface is removed at each of the six square faces of the
truncated octahedron to generate square holes in the six faces of a plumber’s
nightmare with one hexagon in each octant. Identifying pairwise the square
holes of adjacent such units provides the three handles of a genus 3 surface hav-
ing 24/2 = 12 vertices (of degree 4), (24/2) + 12 = 24 edges, and 8 faces (hexa-
gons) per unit (figure 3(b)), consistent with Euler’s theorem, namely v − e + f =
2 − 2g where v, e, f, and g are the numbers of vertices, edges, and faces and the
genus, respectively.

Figure 3. P3 omnicapping of the cube C (a); Dual of P3 (C), i.e., the Le(C) transform. The two
objects form a pair with its dual, which interchange by dualization.
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Figure 4. Two descriptions of the unit cell of a P surface: (a) The “plumber’s nightmare” octahe-
dral junction of six pipes through the faces of a cube; (b) An infinite lattice (of degree 4) embedded

in a genus 3 surface, with a repeat unit derived from Le(C).

This structure is one of the Platonic tessellations [15,16] of genus 3 and is
the dual of the tessellation corresponding to the double cube group [17,18], des-
ignated as 2Wh. In addition, an infinite cubic lattice can be built from this genus
3 building block if the square holes are identified with the square hole in an
adjacent equivalent genus 3 unit and this process is extended to infinity in all
three directions.

The necessarily negatively curved octants in this plumber’s nightmare (fig-
ure 4(a)) structure create too much strain in the hexagonal faces for this to be an
energetically favorable structure in an actual carbon or boron nitride allotrope.
This is true whether the allotrope in question is either molecular consisting of a
single genus 3 unit with identified square holes or polymeric consisting of an infi-
nite cubic lattice of these building blocks joined as discussed above. This struc-
ture thus has no heptagonal or octagonal faces to provide a natural site for this
required negative curvature. Nevertheless, this construction is a useful model for
understanding related procedures for converting a cube to the Dyck and Klein
tessellations (figure 1) that are of greater possible chemical interest.

3. Quadrupling the cube to the Dyck tessellation: The chamfering
transformation

The quadrupling transformation [19–21] (figure 5) is another composite
operation, achieved by the sequence:

Q(M) = E−(TrP3(P3(M))) (2)

where E− means the (old) edge deletion (dashed lines, in figure 5) of the trun-
cation TrP 3 of each vertex where P3 capping faces of a parent face are incident.
Note that the orientation of parent faces is preserved.
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Figure 5. Quadrupling a square face of a 4-valent map.

Figure 6. Quadrupling/chamfering the cube (a) and the unit of 32 atoms, representing the Dyck
graph, within an infinite lattice, embedded in a genus 3 negatively curved surface (b).

The E− edge deletion in the above operation sequence corresponds to the
woodworking operation known as chamfering in which the edges of an object are
planed to faces; hence this operation on polyhedra is also known as chamfering.

Quadrupling the cube generates a closed polyhedron with 6 square faces,
12 hexagonal faces, 48 edges and 32 vertices (figure 6(a)). The number of ver-
tices of the cube is thus quadrupled from 8 to 32. This polyhedron obeys the
“isolated square rule” in which no pair of square faces shares an edge. Strout
[22] has shown by density functional methods that this structure for B16N16 con-
structed from squares and hexagons is much more stable than alternative struc-
tures constructed from pentagons and hexagons.

The above operation can continue with bisection of the edges bounding the
parent-like faces (i.e., those resulting from Tr3). This leads to “open faces” hav-
ing alternating divalent and trivalent boundary vertices. The size of the hexagons
surrounding the open faces enlarges by n, thus leading to sites of negative curva-
ture. The last simple operation was called [11] Opn. In the case of quadrupling,
the sequence leading to open objects is written as follows:
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Figure 7. Trivalent finite (a) and infinite (b) representations of the Dyck tesselation, embedded in
surfaces of genus g � 3. Di, Op, Q denote dimerization, opening and quadrupling operations.

Opn(Q(M)) = Opn(TrP 3(P3(M)) (3)

and is exemplified in figure 6(b) as Opn(Q(C)) The open faces (i.e., holes) in this
structure can participate in the construction of infinite lattices embedded on sur-
faces of negative curvature and genus g = 3. As a result of the Opn operation,
the π -electron networks of molecules associated with such graphs exhibit open-
shell structures including non-bonding orbitals.

Returning to the object in figure 6(b), among the 18 octagons, 6 of them
(those arising from the square faces by the Opn operation) become the holes in
a plumber’s nightmare (figure 4(a)) and are identified pairwise to make a genus
3 surface. This can either be a finite genus 3 surface with three handles connect-
ing adjacent holes or an infinite cubic lattice connecting the holes in adjacent
similar plumber’s nightmares [23]. The remaining 12 octagonal faces become the
12 octagonal faces of a Dyck tessellation (figure 1(b)) embedded on the genus
g � 3 surface, whether finite (figure 7(a)) or infinite (figure 7(b)). The “dimer-
ization” Di operation requires the pairwise identification of all the open faces of
two units, e.g., those shown in figure 6(b). In other words, the vertices of the
parent polyhedron (e.g., the cube) are connected to the degree 2 vertices lying
in three neighboring open faces. The finite object thus obtained has only degree
3 vertices (figure 7(a)).

Note that in applying the Op1 operation to Q(C), the numbers of vertices
and edges are apparently doubled by the edge bisection procedure (figure 6(b)).
The resulting “dimer” (figure 7(a)) has just doubled parameters. These numbers
are then halved to the original 32 vertices, 48 edges and 12 octagonal faces, when
the six “open faces”/holes are identified. The same is true for an infinite lattice
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Figure 8. Precursors of the finite representation of the Dyck graph.

Figure 9. The graph of Dyck, embedded in a tetrahedral (a) and toroidal (b) surface.

derived from the unit in figure 6(b) (see figure 7(b)). However, the dimeric object
having the Dyck tessellation is not the true finite, trivalent Dyck graph.

The above sequence of operations, applied on the tetrahedron (figure 8),
enabled Diudea [11] to find the Dyck graph.

Among the 64 permutations on the dimer in figure 8(b), a trivalent finite
graph having all the characteristics (number of cycles, eigenvalues, etc., identical
to the literature data of the Dyck graph [24]) was found (figure 9(a)). By using
the Torus software package, Diudea [11] succeeded in drawing the 3D toroidal
representation (figure 9(b)), first predicted by Ceulemans et al. [25].
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Figure 10. Septupling a square face of a 3-valent map.

4. Septupling the cube to the Klein tessellation: The capra transformation

The septupling transformation [11,26], called the capra transformation (ca-
pra = goat in Roumanian) by analogy with the designation of the tripling trans-
formation as the leapfrog transformation, is achieved by truncating the vertex
located in the center of parent faces of a pentangulation P5 transform (fig-
ure 10). Note that, P5 involves an E2 (i.e., edge trisection). This operation results
in a map that preserves the original vertices while the parent s-gonal faces are
twisted by 1

4/( 3
2)s.

The transformation can be written [26] as follows:

Ca(M) = TrP 5(P5(M)) (4)

with TrP 5 meaning the truncation of each vertex where P5 capping faces of a
parent face are incident.

The septupling transformation insulates any face of M by its own hexagons,
which are not shared with any of the other original faces (in contrast to Le or Q
– see figure 11(a)). This operation is clearly related to Q(M) (compare equations
(2) and (4)). The multiplication ratio is 2d + 1, which gives 7 in case of a cubic
cage (i.e., having all vertices of degree d=3) [26].

The Ca operation can continue by an En homeomorphic transformation of
the edges bounding the parent-like faces (i.e., those resulted by Tr5) thereby lead-
ing to open maps with all polygons of the same (6+n) size. The sequence leading
to open objects within this operation can be written as follows:

Opn(Ca(M)) = Opn(TrP 5(P5(M))) (5)

The Op1 objects (i.e., molecules) have open-shell π -electronic structures leading
to non-bonding orbitals.

Applying the septupling transformation to the cube gives the objects in
figure 11. Note that all faces in Op(Ca(C)) (figure 11(b)) are heptagons while the
open faces are twice the size of the parent faces (i.e., octagons).
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Figure 11. Capra transforms of the cube, as finite cage (a) and the unit of an infinite lattice.

The vertices in figure 11(b) relative to the faces of the original cube can be
classified into the following three types:

(1) The eight original vertices of the cube, which are each shared by three
faces.

(2) The 2 × 12 = 24 new vertices obtained by an E2 operation on the orig-
inal cube. Each of these vertices is shared by two faces of the original
cube.

(3) The 8 × 6 = 48 vertices of the six open, octagonal faces. Each of these
vertices is unique to a single face. However, these vertices are identified
pairwise to give 48/2 = 24 vertices in the final figure.

Adding up the total number of vertices of the three types gives 8 + 24 + 24 = 56
total vertices. Similarly the edges in figure 11(b) are of the following three types:

(1) The 36 new edges obtained by trisecting the 12 edges of the original
cube. Each of these edges is shared by two faces of the original cube.

(2) The 4 × 6 = 24 edges connecting the octagonal face to vertices of the
original cube. Each of these edges is unique to a single face.

(3) The 8 × 6 = 48 edges of the six octagonal faces. Each of these vertices
is unique to a single face. However, these vertices are identified pairwise
to give 48/2 = 24 edges in the final figure.

Adding up the total number of edges of the three types gives 36+24+24 =
84 total edges. The resulting genus 3 figure with 24 heptagonal faces, 56 vertices,
and 84 edges is the Klein tessellation (figure 1(a)).
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5. Summary

This paper shows how the cube can be related to the truncated octahe-
dron, the Dyck tessellation, and the Klein tessellation by the tripling (leapfrog),
quadrupling (chamfering), and septupling (capra) transformations, respectively.
The last two relationships are useful for constructing possible cubic structures
for low-density zeolite-like carbon and boron nitride allotropes containing seven-
and eight-member rings as well as six-membered rings.
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